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Objectives

® Estimate design loads for the prototype of a 40 kW
Bergey system
® Furling model in question
® Hencethe present objective...

® Determine sensitivity of furling behavior to
aerodynamic model and turbine geometry
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ADAMS Model of a Bergey 40 kW System

@ Structure
® Flexible blades (60 dof each)
Thrust offset easily adjusted
Free-yaw, free-furling (with stops)
Linear furl damper (single-acting, unfurling motion only)
Rigid tower
Rigid drive train with generator torque/speed curve
Properties do not match current design of Bergey system

® Aerodynamics

® AeroDyn aerodynamics model (version 11.25)

@ Optional use of dynamic stall, dynamic inflow, and UIUC post-stall
corrections

® Aerodynamic forceson tail via CL and Cb lookup table
® No adjustment for rotor wake in this version >r
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Rotor Contributionsto the Furling Moment

Steady wind (0.2 power law), 90 rpm, -20° yaw error

(Dynamic stall, Pitt & Peters dynamic inflow, no post-stall correction)
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Sensitivity of Yaw Moment to Aerodynamic
Model

® Steadywind (0.2 power law), 90 rpm, no tail force, fixed yaw and zero furl angle
Normalized by 8 m/s case at zero yaw, with dynamic stall and dynamic inflow

® Color key: Blues= No dynamic inflow; Golds = With dynamic inflow; Gray = No wake.
Last two serieswith zero yaw have zero thrust offset. Dynamic stall and post-stall options

also exercised
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Sensitivity of Rotor Thrust to Aerodynamic
Model

® Steadywind (0.2 power law), 90 rpm, no tail force, fixed yaw and zero furl angle
® Normalized by 8 m/s case at zero yaw, with dynamic stall and dynamic inflow

® Color key: Blues= No dynamic inflow; Golds = With dynamic inflow; Gray = No wake.
Last two serieswith zero yaw have zero thrust offset. Dynamic stall and post-stall options
also exercised
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Predicted Furling Behavior

® Effect of doublingthetail area and the thrust offset

® |EC turbulence (2x10 minutes) with free yaw, free-furl, variable speed
alternator, dynamic stall, dynamic inflow, and furling damper
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Turbulence Affects Mean Behavior

® Predictionsin turbulent (I1EC) and steady winds, both with 0.2 power law
mean shear

® Freeyaw, free-furl, variable speed alternator, dynamic stall, dynamic
inflow, and single-acting furling damper
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Sendgitivity to Tail Vane Size and Weight

® Effect of doubling thetail area and reducing the tail mass by one-half

® |EC turbulence (2x10 minutes) with free yaw, free-furl, variable speed
alternator, dynamic stall, dynamic inflow, and furling damper
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Sengitivity to Airfoil Characteristics

Steady 10 m/s wind (0.2 power law), 90 rpm, fixed yaw and furl, no tail force
Dynamic stall, Pitt & Peters dynamic inflow, no post-stall correction
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Sensitivity to Forward Offset

® Yesterday weran ssmulationsusing “ramp” winds and three
values of forward offset (upwind distance from yaw axisto
hub center)
® Used 9.4%, 13%, and 16% of rotor diameter
® Windsfrom 10to 16 m/sin 1 m/sincrements
® 0.1905 m lateral offset and 2° tilt (different from previous work)

@ Saw virtually no effect on RPM, power, or loads. See minor
effect on furl and yaw angles

® Thisresultiscontrary to intuition and Bergey test
experience. We need to confirm the result with model

checks /m
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Conclusions

® Furlingisaresult of small differencesin large contributors
to the net yaw moment

® Furling responseis most sensitive to the thrust offset
® Tail area and mass are lessimportant
® Airfoil selection and rotor speed can be important

® Dynamic inflow theory has a strong influence on predicted
yaw moment when thereisa small yaw error

® These factors make furling one of the most difficult
situations to model

® These conclusions apply only to the rotor we modeled. The
Bergey 40 kW system and other systems may differ markedly
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Future Plans

® Model validation using Bergey 40-kW test results

® Mode validation using Ames wind-tunnel test
results for the UAE rotor (NREL support)

® Model validation using Whisper 900 test results
from our Small Turbine Field Verification project

(DOE support)
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